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Abstract 

Karle-Hauptman matrices may be used in an algebraic N 

approach to the phase problem. When eigenvalues and n 
eigenvectors are used, it is possible to obtain structural A, B 
information from Kar le-Hauptman matrices of orders x/, ej h 
greater than N, despite the fact that the determinants 
are zero. In this paper, the properties of large Karle-  o 
Hauptman matrices are examined in the infinite and 0 
non-infinite cases. The characteristics of electron 
densities corresponding to separate eigenvectors are 
examined. 

1. Introduction 

The nomenclature used in this paper is given in Table 1. 
A serious investigation into the possible use of matrix 

algebraic methods was performed by Main in 1975. He 
rewrites 

Eh -- ® E EkEh-k, (1) 
k 

the Sayre equation, as 

E = EB, (2) 

in which he defines B as a matrix with elements bq equal 
to ®EH. The reciprocal-lattice vector Hq is obtained by 

i j .  . 

subtracting the vectors h(j)  and h(0. E is a vector of 
normalized structure factors Eh( O. The resulting matrix 
B is a Kar le-Hauptman matrix multiplied by a scale 
factor ®. Equation (2) indicates the close relation 
between Kar le-Hauptman matrices and the Sayre 
equation. In his paper, Main discusses the algebraic 
properties of the matrix B. It should be noted that E 
determines B, as can be readily seen from its definition, 
but given a matrix B an infinite number of E satisfying 
(2) can be found, as the elements bq are defined by the 
differences between h(j)  and h(/). An alternative vector 
E' may be generated using the reflections Eh(i)+, instead 
of Eh( 0, where ! can be any reciprocal-lattice vector. 

When the spectrum of eigenvalues of B is studied, 
one finds restrictions on the values of X i. It was shown 
by Main that, under the condition of (2), one finds the 
following restrictions on Xi: 

Theorem 1. (Main.) X i equals 1 or ei does not contribute 
to E. 
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Table 1. Nomenclature 

Number of atoms in the unit cell 
Order of a matrix 
Hermitian matrices 
The jth eigenvalue and corresponding eigenvector 
Index array for generating Karle-Hauptman matrices: 

Aq = Eh(j)_h( 0 
Scale factor for very large matrices 
Scale factor in the Sayre equation 

The proof follows from the fact that E is spanned by 
the eigenvectors of B (ej) and B equals BE. 

E = ~ ajej (3) 
j=l 

BE = ~ ajBej (4) 
j=l 

ajX;ej = a : ,  (5) 

where aj is the length of the projection of the eigen- 
vector ej along E. The sum over n can be left out of (5) 
as the eigenvectors ej are orthonormal. 

In this paper, an alternative derivation for restric- 
tions on the eigenvalue spectrum will be given because 
the formulae previously given hold in the infinite case 
only, losing their validity in practice. The reason is that 
formula (2) only holds exactly when n -- ¢~, i.e. when 
the sum over all possible reflections is taken. 

Furthermore, even if E is an eigenvector of a Kar le-  
Hauptman matrix with an eigenvalue 1, all formulae 
presented by Main can be simplified by taking a 1 = 1 
for e I = E and a i = 0 for all other ej. In this case, all 
formulae reduce to standard crystallographic equations 
or equations with both sides equal to zero. Writing E as 
a linear combination of other e /s  with eigenvalue 1 is 
nothing more than a change of basis and has little 
crystallographic relevance. 

Finally, for very large matrices, the eigenvalues do 
become nearly equal to 1, but never exactly so. 
Therefore, using (2) in the finite case is incorrect, even 
in the first approximation. 

An important restriction that holds for both the 
approach in this paper and the methods described by 
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Main is that all formulae are valid only for equal atoms, 
since this is an implicit condition when the Sayre 
equation is used. 

2. The  infinite case 

An alternative way of regarding the problem is to 
investigate the entire eigenvalue spectrum of B. It will 
be shown that for equal atoms, when the dimension of 
the matrix reaches infinity, all eigenvalues become 
either 0 or 1. This differs from Theorem 1, as Main 
states that while some eigenvalues have a value of I the 
remaining eigenvalues are undetermined. 

The proof follows from the non-negativity of a 
Kar le-Hauptman matrix. The non-negativity implies 
that all eigenvalues are larger than or equal to 0. When 
a Kar le-Hauptman matrix has a dimension n _< N, the 
determinant of a Kar le-Hauptman matrix is greater 
than 0 (Karle & Hauptman, 1950; Goedkoop, 1950). If 
n > N, the determinant of B becomes 0, implying that 
at least one eigenvalue must be 0. Navaza & da Silva 
(1979) and earlier von Eller (1955) have shown that the 
elements of a Kar le-Hauptman matrix can be written as 
the variance and covariance factors of an N-dimen- 
sional basis V for vectors V(k) defined as 

N 
V(k) = y~ exp (2rr/k • rj)ej. (6) 

j=l 

Each element Eh0)_h( 0 in a Kar le-Hauptman matrix can 
be written as V(h(i)).  V(h(])); all vectors V(k) can be 
written as linear combinations of the basis V. If Kar le-  
Hauptman matrices of orders greater than N are 
considered, clearly the elements in the additional rows 
and columns can be written as the in-product of a linear 
combination of vectors in the o r ig ina l  basis. The 
maximum rank of the Kar le-Hauptman matrix is 
therefore N and no more than N eigenvalues can be 
different from 0. If the dimension is larger than N, the 
rank is also at least N since the N vectors V(k) are 
spanned by an N-dimensional basis. From these condi- 
tions, it follows that the rank of a Kar le-Hauptman 
matrix of order n > N equals N. 

Two interesting observations can be made. First, the 
sum of eigenvalues of a Kar le-Hauptman matrix equals 
the sum of the diagonal elements (this is an algebraic 
property which holds for any square matrix) and is 
therefore independent of the phases in the matrix. 
Second, the variance of the eigenvalues of a Kar le-  
Hauptman matrix is also independent of the phases in 
the matrix, which can be verified by calculating the 
square of a Kar le-Hauptman matrix and calculating its 
trace. 

These observations enable one to estimate the 
eigenvalue spectrum for large n if the Kar le-Hauptman 
matrix contains the calculated and scaled E factors. The 

average over all eigenvalues is 

n 

I)~l = F~)~ /n  
i=1 

n 

= ~ ,  bJn 
j=l 

= ®Go® (7) 

and because n - N eigenvalues are zero, the average of 
the remaining N eigenvalues is 

(X[X • a(B), X > 0 ) =  ®Eooon/N, (8) 

where a(B) is the spectrum of the eigenvalues of matrix 
B. Now it is useful to investigate the value of ®. If (1) is 
rewritten as 

E h = ® ~ E k E h _ k  
k 

--- O ( E k E h _ k ) k ,  (9) 

clearly the relation between ® and 0 is 

O = O/n (10) 

since (9) is the Sayre-Hughes equation. Since the 
equal-atom case is considered, we may substitute N 1/2 
for E000, 0 becomes N 1/2 and (8) becomes 

(XlZ • o-(B), Z > 0) = OEooo(n/N) 

= (YU2/n)g l /Z(n /g)  

= 1 ,  (11) 

thus obtaining the average value of those X's greater 
than zero. 

The sum of the squared eigenvalues (which is equal 
to the trace of the square of the Kar le-Hauptman 
matrix) is 

trace(B 2) = ®2 £ £ Eh(/)_h(i)2. (12) 
i=1 j=l 

For infinitely large matrices, we can substitute the 
average value for [Eh0)_h(i)[ z, which is 1, from which 
follows that the sum of the square of all non-zero 
eigenvalues equals N when n goes to ~ .  This leads to 
two equations: 

N 
E Xi = N (13) 
/=1 
N 

X/2 -- N. (14) 
i=l 

Clearly this system of equations is satisfied ff and only if 
all eigenvalues greater than zero are one (for real 
eigenvalues). 

This conclusion has two interesting consequences: as 
was shown earlier, B E has the same eigenvectors and the 
squared eigenvalues of B, and since 12 -- 1 and 0 2 = 0, 



264 EIGENVALUES AND EIGENVECTORS IN THE PHASE PROBLEM 

the eigenvalues are identical as well. This is only 
possible when B 2 -- B, which implies that 

Theorem 2. An n-dimensional Kar le-Hauptman matrix 
equals its own square for limn~ ~ in the equal-atom 
case. 

This results in a relation between the elements in B 
and B 2. Comparing two elements bij and b 2, we find 

bij = b 2 
oo 

{~Eh(j)_h(i) = ~_, bikbky 
k=l  

o(~ 

__ {~2 E Eh(k)-h(i)Eh(j)-h(k)" (15) 
k=l  

Equation (15) becomes clearer when we substitute K 
for h(j)  - h(/) and L for h(k) - h(i). Equation (15) now 
becomes 

EK = ® y~ ELE~_ L, (16) 
L 

where the sum over L can be taken instead of the sum 
over k since the vectors only differ by a constant vector 
h(i) and the sum is over an infinite number of terms, the 
terms in the total sum are the same. 

Equation (16) is the Sayre equation, indicating that 
taking the square of an infinitely large Kar le-Hauptman 
matrix results in a Hermitian matrix with entries 
obtained by applying the Sayre equation to the original 
elements. It should be noted that the sum in (16) for 
one reflection is only over the product of one row and 
one column in the Kar le-Hauptman matrix. 

Concluding this section, we summarize the properties 
of a Kar le-Hauptman matrix B of infinite order 
corresponding to an equal-atom structure: 

(i) The eigenvalues of B are either 0 or 1. 
(ii) There are only N eigenvalues not equal to 0. 
(iii) B equals its own square. 
These properties indicate that B is a projection 

matrix. A random vector would be projected on the 
space spanned by the N eigenvectors with eigenvalue 1. 

3. The  finite case 

When n is no longer very much larger than N, several 
results obtained in the previous paragraphs no longer 
hold, except in a first approximation. Perhaps the most 
important change is in the spectrum of the eigenvalues: 
No longer are they restricted to zero or one, and only 
their average value remains the same. Theorem 2 is also 
no longer valid. As is customary in the literature on 
Kar le-Hauptman matrices, unitary structure factors will 
be used in the following discussion. 

bij = Uh(j)_h(i), (17) 

where 

u .  = e . / G o o  

= ( 1 /  ~-~Zj) ~-~Zjexp[2rci(H.ri) ], (18) 
j = l  1=1 

leading to the following expressions for the average and 
the sum of the eigenvalues. Note that U000 equals 1 and 
therefore all the diagonal elements are equal to 1. 

X i = n (19) 
i=1 

i=1 i=1 j = l  

Of course, the restriction that only N eigenvalues can be 
non-zero still holds. With calculations similar to the 
ones in the previous section, one can show that the 
eigenvalues are restricted to 1 and 0 only if all terms 
U 2 I h(j)-h(i)l are equal to their expected values of 1. 

Only a few properties of the eigenvalue spectrum can 
be calculated a priori in the non-infinite case. It has 
been shown that the variance and the average of the 
eigenvalues are independent of the choice of phases 
and may be calculated without knowledge of the 
structure. Furthermore, the correct phase set has an 
eigenvalue spectrum containing n -  N zeros and N 
eigenvalues greater than zero. 

4. E igendens i f i e s  

In the original paper by Main (1975), the concept of 
'eigendensities', associated with the eigenvectors of a 
Kar le-Hauptman matrix was introduced, defined as: 

p(X)j = ~_, ejh exp[27riH(h), x], (21) 
h 

where ejh corresponds to the hth element of the j th 
eigenvector (note: the original notation has been 
adapted slightly to be consistent with the rest of this 
paper). When the eigenvectors and eigenvalues of a 
matrix B are known, B can be written as 

n 

B = ~ ej~.je 7, (22) 
j = l  

where e 7 is the complex conjugate of the transpose of % 
Therefore, the element at position kl in a matrix B can 
be written as a sum of contributions of the eigenvector 
elements: 

bkl = ~ ejk).yeyl. (23) 
j = l  

If the electron density is defined as 

p(x) = ~ E(H)exp(-27r iH-  x) 
H 

(24) 
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and the following assumptions are made: (a) the 
reflections present in a Kar le-Hauptman matrix are 
sufficient to describe the electron density; (b) all 
reflections occur once and only once in the Kar le-  
Hauptman matrix, the electron density may be written 
a s  

p(x) = L L ~'jejk~qZ e x p { - - 2 z r i [ h ( / )  - -  h ( k ) ]  • x}. 
k = l , / = l  j = l  

(25) 

If every reflection occurs only once in the Kar le-  
Hauptman matrix, the first assumption can always be 
met by increasing the order of the matrix. The validity 
of the second assumption depends on the choice of the 
index array h. In practice, the problem of choosing h is 
not a trivial one. This problem will be discussed further 
in the following paper, dealing with the application of 
the the theory discussed here. From (25), it is possible 
to define an eigendensity different from (21), e.g. 

p ( x ) j =  L )~je/keizexp{-27ri[h(l)-h(k)] 'x} .  (26) 
k = l , l = l  

The main difference between the definitions (21) and 
(26) is that in (21) the Fourier transform of the eigen- 
vectors is considered, whereas in (26) the Fourier 
transform of the contributions of the eigenvectors to 
the reflections in the matrix are taken. Equation (26) is 
more complex, but the sum over j of (26) is always 
equal to the electron density corresponding to the 
Fourier transform of the reflections in the Kat ie -  
Hauptman matrix, irrespective whether infinite or non- 
infinite matrices are being considered. This is not true 
for (21). 

The properties of the eigendensities defined by (26) 
will now be examined. First of all, it is expected that, 
since the eigenvectors are orthogonal, the eigenden- 
sities are also orthogonal. Thus one would expect 

f p(X)iP(X); dX "-- 0 (27) 
v 

when i ¢ j. Equation (27) must still be verified, since 
the product p(x)iP(X)j is not a normal in-product but a 
quadruple sum. Verifying (27) is simple when the 
product p(x)ip(x)j is written as 

f p(x)iP(X)~, dx 
V 

:LLLLeiheikejlejm 
h=l  k=l  l=1 m=l  

x exp{2zri[h(h) - h(k) - h(l) + h(m)] • x}, (28) 

remembering that the integral over one period of a sine 
or cosine function is zero. The exponential part of (28) 
is a sum of a cosine and a sine, periodic with a period 
equal to 2yr/n i in the directions x 1, x 2 and x 3, respec- 
tively. Since the first part of (28) is independent 

of x, the total integral in (28) is zero unless the second 
part has a phase of zero and thus becomes independent 
of x. So only those terms in (28) for which 
h ( h ) - h ( k ) - h ( l ) + h ( m ) - - O  holds need to be 
considered. 

When all possible combinations of 
h(h) - h(k) - h(l) + h(m) are examined clearly only for 
(h = k A l = m) V (h = l A k = m) is the second part of 
(28) zero. However, the sum of these terms is not equal 
to zero. They can be written as 

f p(x)ip(x) 7 dx = ~ L eikeikejlejl-~- L L eikejkeimejm 
V k=l  1=1 k=l  m=l  

-- L e]kejkeikeik 
k=l  

= 1 + 0 -- L e/kejkeikeik (29) 
k=l  

[note that the final part in (29) contains the terms 
present in both the first and second sums]. Therefore 
not all eigendensities are orthogonal. The first term in 
(29) consists of elements corresponding to reflections 
on the diagonal only, thus with index (000). Further 
investigation shows that, even if every reflection occurs 
at most once in the Kar le-Hauptman matrix, the diag- 
onal elements are all equal to E000. Thus, if the reflec- 
tions used to calculate the eigendensities are to be the 
same as the ones used to calculate the conventional 
electron density, only one diagonal element should be 
used in the summation. This leads to a definition of an 
alternative eigendensity, 

p(X)] : L ~'j(ejkejl + Ej) 
k=l,/=l,k=fil 

× exp{--2zri[h(/) -- h(k)] • x}, (30) 

in which ej is the average value of the diagonal elements 
in the matrix B i -- ej~.eT, namely (ejk~jk)k. This changes 
(29) to 

f p(x)ip(x)~ dx 
V 

= [ ( h=~l k=~,k~heiheik) -J- Ei] I ( ~=lm=~l,m~l ~jlejm) 

+ ejl exp{2rci[h(h) - h(k) - h(l) + h(m)] • x} 

: F_,i~, j .Jr. L ~ eikejkeimejm- L e]ke]keikeik 
k=l  m=l  k=l  

: 8ie j + 0 -- L ejkejkeikeik" 
k=l  

(31) 

An estimate of the value of expression (31) can be 
made by substituting the average values for ejkOjk. The 
sum of all e l e m e n t s  Ejejkejk equals Bkk. Since 
Bkk --- ®Eooo -- OEooo/n, the product ejk~jk averages 
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OEooo/nN. Equation (31) can be estimated by 

f p ( x ) i P ( X ) 7  d x  - -  (OEooo/Nn) 2 - n(OEooo/Nn) 2 
V 

= (N1/2N1/2/nN)  2 - (N1/2N1/2)2/nN2 

= 1In  2 - 1In  

-- (1 - n ) / n  2, (32) 

indicating that: the average overlap between eigen- 
densities defined by (30) is negative; and for large 
values of n the overlap approaches zero. 

concluded immediately that the phase set is incorrect 
(note that this only true when calculated IEl's or I Ul's 
are used!). It is important to realise that (33) only holds 
exactly in space group P1 since the phase transforma- 
tion does not preserve the phase restrictions imposed 
by symmetry. Furthermore, if certain reflections (or 
symmetry-related reflections) occur more than once in a 
Karle-Hauptman matrix, their phase values are no 
longer related after the transformation. These two 
properties result in a reduced importance of this 
problem in practice. 

5. The meaning of semipositivity 

An important question is: What is the physical meaning 
of the semipositivity property? In 1977, the Slater 
determinants proposed by Lajz6rowicz & Lajz6rowicz 
(1966) were used to prove that that the forbidden 
region for an N × N Karle-Hauptman matrix is the 
entire space, with the exception of the atomic positions 
(Knossow et al., 1977). On the other hand, in a recent 
paper it was demonstrated that if there is no redun- 
dancy or symmetry present in a Karle-Hauptman 
matrix there is an infinite number of alternative phase 
sets with identical determinants and eigenvalues (de 
Gelder, Elout, de Graaff & Schenk, 1993). The eigen- 
vectors, however, differ and the Fourier transform of 
the reflections in the Karle-Hauptman matrix does not 
necessarily correspond to a positive electron density. In 
fact, if it does correspond, this electron density must 
also be constituted by N equal atoms, since it shares the 
eigenvalue spectrum of the original structure. The 
Patterson map must be identical also. The proof of the 
existence of phase sets with equal eigenvalues 
presented by de Gelder et al. is given below: If A is a 
semipositive Karle-Hauptman matrix, there is a similar 
matrix B defined by: 

B = C -1AC, (33) 

where C is a diagonal matrix with elements exp(i~bi), ~b i 
are random phases between 0 and 2yr. It can also be 
shown by squaring equation (33) that the square of B is 
also similar to the square of A and thus the 'reflections' 
in B also obey the Sayre equation for large orders. 

Combining the fact that only the atomic positions are 
outside the forbidden space and the existence of an 
infinite number of phase sets that correspond to a 
semipositive Karle-Hauptman matrix, it follows that if 
a phase set corresponds to a Karle-Hauptman matrix 
that has no negative eigenvalues there is no guarantee 
that this phase set is the correct one. However, the 
phase set must be related to the correct phase set by 
(33). If there are negative eigenvalues, it can be 

6. Conclusions 

Large Karle-Hauptman matrices containing the 
correctly phased structure factors have N eigenvectors 
with an eigenvalue greater than zero and n - N  
eigenvectors with an eigenvalue equal to zero. For very 
large matrices, the Karle-Hauptman matrix becomes a 
projection matrix with N eigenvalues equal to one. 

The new definition of the eigendensities enables the 
electron density to be written as the sum of contribu- 
tions from the individual eigenvectors. These eigen- 
densities are approximately orthogonal for large 
matrices. 

There is only one phase set (disregarding a change of 
origin and homometric structures) whose Fourier 
transform is non-negative and whose eigenvalues are 
greater than or equal to zero when the eigenvalue 
spectrum of the corresponding Karle-Hauptman matrix 
is calculated. There are phase sets corresponding to 
Karle-Hauptman matrices with semipositive eigen- 
values and a nonpositive Fourier transform. 

The information obtained in this article has been 
used to generate phase-refinement routines that have 
been tested on several organic molecules. The tech- 
niques and the results will be discussed in the following 
article (van der Plas et al., 1998). 
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